
Quantum global vortex strings in a background field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 L277

(http://iopscience.iop.org/0305-4470/39/18/L04)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 03/06/2010 at 04:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) L277–L283 doi:10.1088/0305-4470/39/18/L04

LETTER TO THE EDITOR

Quantum global vortex strings in a background field

E C Marino

Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, Cx.P. 68528, Rio de Janeiro RJ
21941-972, Brazil

Received 20 December 2005
Published 19 April 2006
Online at stacks.iop.org/JPhysA/39/L277

Abstract
We consider quantum global vortex string correlation functions, within the
Kalb–Ramond framework, in the presence of a background field-strength tensor
and investigate the conditions under which this yields a nontrivial contribution
to those correlation functions. We show that a background field must be
supplemented to the Kalb–Ramond theory in order to correctly describe the
quantum properties of the vortex strings. The explicit form of this background
field and the associated quantum vortex string correlation function are derived.
The complete expression for the quantum vortex creation operator is explicitly
obtained. We discuss the potential applicability of our results in the physics of
superfluids and rotating Bose–Einstein condensates.

PACS numbers: 11.27.+d, 03.70.+k

Global vortex strings appear as nontrivial excitations in many important physical systems
described by the relativistic global U(1) Abelian Higgs model in the spontaneously broken
phase. Typical examples are the cosmic strings left as remnants of topological phase transitions
occurred in the early universe [1]. Superfluid vortices are similar excitations occurring in
nonrelativistic systems such as superfluid helium II [2]. The second case is evidently a
completely quantum system and, therefore, a full quantum description of the superfluid vortex
excitations is necessary. Even for cosmic strings, however, a quantum description is likely
to be needed in the early stages of the universe, where quantum effects should be important.
Quite interesting works have been devoted to the quantum description of vortices in superfluids
[3]. The particular case of vortices in superfluid films has been considered in [4], where a
topological coupling between the field associated with the superfluid film and the vortices
has been introduced. Yet, a formulation made explicitly in terms of a fully quantized vortex
creation operator and its correlation functions would be highly interesting.

More recently, it has been found that superfluid vortices are abundantly generated in
rotating Bose–Einstein condensates. These are also deeply quantum systems, and consequently
a quantized framework is required for studying the dynamics of such vortices. An intense
research activity has been devoted to these systems in the recent years [5].
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The relation between global strings and superfluid vortices has been clarified quite a few
years ago. It has been shown that classical superfluid vortices could be described as global
strings in the presence of a particular nonrelativistic background field [7, 8]. Assuming that
this relationship could be extended up to the quantum level, the potential applicability of a
quantum theory of global strings to superfluid vortices becomes clear.

In a previous paper, we introduced a creation operator of fully quantized global vortex
string states and evaluated its two-point correlation function in the Kalb–Ramond framework
[9]. As we argue below, however, this correlation function is not satisfactory. The reason
is that its short-distance behaviour does not correspond to what one should expect from a
genuine operator creating local states. The fact that these are not normalizable implies that
the corresponding correlator should diverge at short distances.

In this work, we evaluate the global vortex string creation operator correlation function
in the presence of a background field and investigate the necessary conditions for a nontrivial
effect thereof. We show that a background field containing the information that the superfluid
state is destroyed along the vortex string should be included, in order for the quantum
correlation function to have the nontrivial short-distance behaviour suitable to a genuine
operator creating local quantum states. The vortex string correlation functions in the presence
of a background are equivalent to the correlation functions of a new vortex string operator,
whose form is explicitly obtained.

Global vortex strings are solutions of theories with spontaneously broken global U(1)
symmetries. One of the simplest examples is the U(1) Higgs model,

L[φ] = |∂µφ|2 + m2|φ|2 − λ

4
|φ|4, (1)

where φ = ρ√
2

eiθ is a complex scalar field. Another example would be the Gross–Pitaevskii
equation, which is nonrelativistic [6].

An interesting particular regime is the one when the coupling λ is large and we may
approximate ρ by its constant vacuum value ρ0 = 2m2/λ. The only remaining dynamical
degree of freedom, in this case, is the scalar (Goldstone boson) field θ :

L = ρ2
0

2
∂µθ∂µθ. (2)

In this framework, global strings are solutions with a nonzero vorticity. This is defined in
terms of the vorticity current

Jµν(x) ≡ εµνρσ ∂ρ∂σ θ(x) = 2πn

∫
S(C)

d2ξµν δ4(x − ξ), (3)

where the vortex string coincides with the curve C and S(C) is its world surface. In the above
equation, for the vortex current to be nonvanishing, of course, θ must be multivalued. 2π is
the vorticity quantum in the units we are working and n is an integer corresponding to the
number of vortex quanta. Assuming that the phase θ is defined relatively to the vortex centre,
the second part of (3) follows.

An extremely useful equivalent description of this system was obtained [11], in terms of
the antisymmetric tensor gauge field Bµν , or Kalb–Ramond field, whose field-strength tensor
is given by Hαβγ = ∂αBβγ + ∂βBγα + ∂γ Bαβ [12]. The connection is made by writing the U(1)
Higgs current as the topological current of the Kalb–Ramond field, namely,

Jµ = 1
6εµναβHναβ = ρ2∂µθ. (4)
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It has been shown that in the regime where the field ρ has a constant value ρ0, the Higgs
Lagrangian (1), in the presence of a string configuration associated with the current (3), can
be described by [11]

L[Bµν] = 1

12ρ2
0

H 2
µνα +

1

2
BµνJ

µν. (5)

The vorticity flux along a surface R is then given by (from now on, we assume that the
i, j, k components run over spatial indices)

�R =
∫

R

d2xi J i0(�x, t) =
∫

R

d2xi ∂j�
ji, (6)

where �ij is the momentum canonically conjugate to the Kalb–Ramond field.
An important application of this theory is in the description of superfluid systems. In

these, the superfluid density is given by ρ2 and the superfluid velocity by �∇θ . The superfluid

current, therefore, is �j = ρ2 �∇θ . This is the spatial component of jµ = ρ2∂µθ = −iφ∗ ↔
∂ µ φ,

namely, the U(1) current of the Higgs model (1). The following point, however, is crucial for
using the Kalb–Ramond field in the description of the superfluid. It has been demonstrated
that in order to correctly describe the classical physical properties of vortices in superfluid
systems, one should add to the field-strength tensor Hµνα a constant nonrelativistic background
field [7, 8]

H̄µνα =
{√

ρ0ε
ijk, µ, ν, α = i, j, k

0 otherwise.
(7)

The reason why global strings differ from superfluid vortices is that they live in a Lorentz
invariant vacuum and, consequently, there is no circulation of energy–momentum around
them. Superfluid vortices, conversely, do have a fluid flux circulating them. It has been
shown, however, that in the presence of the nonrelativistic background (7), the global string
spins around its axis and superfluid vortices are equivalent to spinning global strings [7, 8].
This description is an alternative to the Gross–Pitaevskii formulation that would lead to the
nonrelativistic version of (2) in the (constant ρ) incompressible regime (see (25)).

In a previous paper [9], using a general method of quantization of topological excitations
[10], we have introduced a quantum global string creation operator, σ(C, t), which acting on
the vacuum creates a quantum string state at the curve C on the instant t. It is given by

σ(C, t) = exp

{
ia

2

∫
T (C)

d2ξµν

∂αHαµν

−�

}
= exp

{−ia

2

∫
T (C)

d2ξij Bij + gauge terms

}
. (8)

In the above expressions, a is an arbitrary real number and T (C) is a spacelike surface bounded
by the closed string at C. d2ξij is the surface element of T (C), the directions i, j being along
the surface.

We may write (8) as

σ(C, t) = exp

{
1

2

∫
d4x HαµνC̃

αµν

}
, (9)

where

C̃αµν = ∂αC̃µν, C̃µν = ia
∫

T (C)

d2ξµν

1

−� (z − ξ). (10)

From (6) and (8), we can show [9] that

�R|σ(C, t)〉 = a|σ(C, t)〉, (11)
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provided C pierces R. This demonstrates that indeed the quantum string operator creates
eigenstates of the vorticity operator with eigenvalue a, which we may choose equal to 2πn

(note that �R and also a are dimensionless).
The Euclidean two-point correlation function of the quantum string operator can be written

as the functional integral [9]:

〈σ(Cx)σ
†(Cy)〉 = Z−1

∫
DBµν exp

{
−

∫
d4z

[
1

12ρ2
0

HµναHµνα

+
1

6
C̃µνα(z; x, y)Hµνα +

ρ2
0

6
C̃µναC̃µνα

]}
, (12)

where Z is the vacuum functional, C̃µνα(z; x, y) = C̃µνα(z; x) − C̃µνα(z; y), corresponding
to strings in Cx and Cy . The last term in the exponent is a renormalization counterterm,
introduced in order to guarantee locality of the correlation function, which thereby becomes
surface independent. An arbitrary n-point quantum global string correlation function would
be obtained by just inserting additional external fields C̃µνα(z; xi), i = 1, . . . , n, in (11).

In [9], we have calculated the above correlator, at equal times, in the case of a large
straight string of length L along the z-direction and piercing the xy-plane at the point �x. The
result is

〈σ(�x, t)σ †(�y, t)〉 = exp

{
−La2ρ2

0

8π
|�x − �y|

}
. (13)

From the large-distance behaviour of this expression, we can obtain the quantum string creation

energy. This is given by E(L) = La2ρ2
0

8π
, which means that the string energy per unit length is

a constant parametrized by the vorticity of the quantum string and the superfluid density.
Even though the large-distance behaviour of expression (13) is suitable and reveals the

energy of the objects being created by σ , its short distance is unsatisfactory. Observe that

lim
�x→�y

〈σ(�x, t)σ †(�y, t)〉 = ||σ(�x, t)〉|2 = 1. (14)

Remember, however, that genuine local states created by a quantized field are not normalizable.
Hence, the two-point correlator of a genuine quantum global string creation operator should
diverge at short distances. In what follows, we show that this shortcoming can be eliminated
by the introduction of a particular background Kalb–Ramond field-strength tensor in (12). By
the way, as we have seen before, the correct classical description of superfluid vortices also
requires the inclusion of a background field given by (7).

Following the above reasoning, instead of (12), we are going to evaluate

〈σ(Cx)σ
†(Cy)〉H̄ = Z−1

∫
DBµν exp

{
−

∫
d4z

[
1

12ρ2
0

(Hµνα + H̄µνα)(Hµνα + H̄µνα)

+
1

6
C̃µνα(z; x, y)(Hµνα + H̄µνα) +

ρ2
0

6
C̃µναC̃µνα

]}
, (15)

where the background field strength H̄µνα is a priori non-specified.
The functional integral over the Bµν field is quadratic and can be performed by following

the same steps used for evaluating (12) [9]. The result is

〈σ(Cx)σ
†(Cy)〉H̄ = exp

{
FH̄=0(Cx, Cy) − ρ2

0

2

∫
d4z d4z′

×
{[

1

6ρ2
0

εαβγσ ∂σ H̄ αβγ (z)

] [
1

6ρ2
0

εµνλρ∂ ′
ρH̄ µνλ(z

′)
]

+ [εαβγσ ∂σ C̃αβγ (z)]

×
[

1

6ρ2
0

εµνλρ∂ ′
ρH̄ µνλ(z

′)
]} [

1

−�

]
(z − z′)

}
. (16)
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In this expression, FH̄=0(Cx, Cy) is the result of the calculation without any background
performed in [9] and[

1

−�

]
(x) =

∫
d4k

(2π)4

eik·x

k2
= 1

4π2|�x|2 . (17)

The second term in the exponent in (16) vanishes because C̃αβγ is a derivative (see
equation (10)). Accordingly, for the first term to be different from zero, the background field
should not be of the form H̄ αβγ = ∂αB̄βγ + ∂βB̄γα + ∂γ B̄αβ . In this case, the first term in
(16) would also vanish. It is easy to see that when the background has this form it gives no
contribution to (15): by shifting the functional integration variable as Bµν → Bµν + B̄µν ,
we would eliminate the background from (15). It is also clear from (16) that a constant
background such as (7) would have no effect in the quantum string correlation function.

The condition for the background field to give a nonzero contribution to the correlator
(15) is that it should not satisfy Bianchi’s identity, namely,

1
6εαβγσ ∂σ H̄ αβγ �= 0. (18)

According to (4), however, this means that the superfluid current would no longer be
conserved in the presence of the background H̄ αβγ . This observation provides us the clue
for obtaining a suitable form for the background field H̄ αβγ . Along a vortex, the superfluid
phase is destroyed and, consequently, the superfluid current is no longer conserved because
of depletion. The same thing should happen for a quantum vortex string. Hence, when
computing the quantum string correlator (15), we must introduce a background field such that
Bianchi’s identity is not satisfied along the vortices. The simplest configuration satisfying this
requirement is

1

6
εαβγσ ∂σ H̄ αβγ = ρ0 a

∮
Cx−Cy

dξµ n̂µ(ξ)δ4(z − ξ), (19)

where n̂µ(ξ) is a unit vector tangent to the string at the point ξ . The background field strength
satisfying (19) is

H̄ αβγ = ρ0 aεαβγ ν

∫
T (Cx)−T (Cy)

d2ξµν n̂µ(ξ)δ4(z − ξ), (20)

where T (C) is a spacelike surface bounded by C. Inserting (20) in (16) and performing the z

and z′ integrals, we obtain the following expression for the H̄ contribution to the correlation
function:

exp


−a2

2

2∑
i,j=1

λiλj

∮
Ci

dξµ

∮
Cj

dην n̂µ(ξ)n̂ν(η)

[
1

−�

]
(|ξ − η|)


 . (21)

In this expression, λi = ±1, corresponding to Cx and Cy , respectively. The self-interaction
terms i–i are eliminated by a renormalization of the string operator σ .

Considering again the previous situation of a large straight string along the z-axis and
piercing the xy-plane at �x, we may follow the procedure described in [13] to evaluate (21).
Including the H̄ = 0 contribution, calculated before, we get

〈σ(�x, t)σ †(�y, t)〉H̄ = exp

{
La2

|�x − �y| − La2ρ2
0

8π
|�x − �y|

}
. (22)

We now have

lim
�x→�y

〈σ(�x, t)σ †(�y, t)〉 = ||σ(�x, t)〉|2 → ∞, (23)
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which is the expected behaviour of a genuine creation operator of local states. The large-

distance behaviour is the same as before, yielding a string tension a2ρ2
0

8π
.

In the same way that the Kalb–Ramond theory should be supplemented by the addition
of the background field (7) in order to correctly describe the classical properties of vortex
strings [7], it must be supplemented by the introduction of the background field (20) in order
to describe the quantum properties of these excitations. It would be interesting to study the
behaviour of 〈σ 〉, in order to investigate the possible relationship between the two background
fields.

An alternative interpretation that is quite appealing is to regard (15) and (22) as the
correlator of a new vortex string creation operator � ≡ σµ. From (15) and (20), dropping the
renormalization terms, we find that the operator µ is given by

µ(C, t) = exp

{
ia

2ρ0

∫
T (C)

d2ξµν n̂νεµαβγ ∂αBβγ

}
= exp

{
ia

2ρ0

∫
T (C)

d2ξij n̂j εikl�kl

}
, (24)

where �ij is the momentum canonically conjugate to the Kalb–Ramond field Bij .
Equation (12) would also be satisfied by the states |�(C, t)〉, since µ commutes with �R .

This shows that � indeed is a quantum global string creation operator. Note that it resembles
the Mandelstam operator of 2D field theories [14]. This suggests a parallelism between the
systems studied here and the two-dimensional ones where the Mandelstam operator is relevant,
such as the sine-Gordon theory and the Coulomb gas.

Expression (22) for the vortex string correlation function and the new quantum vortex
creation operator obtained thereof should be relevant in the study of the dynamics of quantum
vortices, vortex lattice formation and in the vortex nucleation problem in superfluid helium II
and in rotating Bose–Einstein condensates.

Let us remark, finally, that the relevant physics of superfluids is described by the Gross–
Pitaevskii equation [6], which is of first order in time. In this case, the constant ρ regime of
the fluid would be described by the nonrelativistic version of (14), namely,

L = ρ2
0

2
[iθ∂0θ + ∂iθ∂iθ ]. (25)

Accordingly, in order to construct the vortex operator corresponding to σ or � directly in the
Gross–Pitaevskii framework, we should consider the nonrelativistic version of (5), (12), (14)
and (15). We intend to pursue this in a future publication.

This work has been supported in part by CNPq and FAPERJ.
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